3.177 \(\int \frac{\sqrt{\cos (c+d x)}}{a+a \cos (c+d x)} \, dx\)

Optimal. Leaf size=70 \[ \frac{F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{\sin (c+d x) \sqrt{\cos (c+d x)}}{d (a \cos (c+d x)+a)} \]

[Out]

-(EllipticE[(c + d*x)/2, 2]/(a*d)) + EllipticF[(c + d*x)/2, 2]/(a*d) + (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a
 + a*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.0825385, antiderivative size = 70, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {2769, 2748, 2641, 2639} \[ \frac{F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{\sin (c+d x) \sqrt{\cos (c+d x)}}{d (a \cos (c+d x)+a)} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]/(a + a*Cos[c + d*x]),x]

[Out]

-(EllipticE[(c + d*x)/2, 2]/(a*d)) + EllipticF[(c + d*x)/2, 2]/(a*d) + (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a
 + a*Cos[c + d*x]))

Rule 2769

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(b
*Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(a*f*(a + b*Sin[e + f*x])), x] + Dist[(d*n)/(a*b), Int[(c + d*Sin[e + f*
x])^(n - 1)*(a - b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
b^2, 0] && NeQ[c^2 - d^2, 0] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cos (c+d x)}}{a+a \cos (c+d x)} \, dx &=\frac{\sqrt{\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac{\int \frac{a-a \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx}{2 a^2}\\ &=\frac{\sqrt{\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac{\int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{2 a}-\frac{\int \sqrt{\cos (c+d x)} \, dx}{2 a}\\ &=-\frac{E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{\sqrt{\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}\\ \end{align*}

Mathematica [C]  time = 1.00311, size = 256, normalized size = 3.66 \[ \frac{\cos ^2\left (\frac{1}{2} (c+d x)\right ) \left (\frac{2 \sqrt{\cos (c+d x)} \left (\sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right ) \sec \left (\frac{1}{2} (c+d x)\right )+\csc (c)\right )}{d}-\frac{2 i \sqrt{2} e^{-i (c+d x)} \left (\left (-1+e^{2 i c}\right ) \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (-\frac{1}{4},\frac{1}{2},\frac{3}{4},-e^{2 i (c+d x)}\right )+\left (-1+e^{2 i c}\right ) e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},-e^{2 i (c+d x)}\right )+e^{2 i (c+d x)}+1\right )}{\left (-1+e^{2 i c}\right ) d \sqrt{e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}\right )}{a (\cos (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cos[c + d*x]]/(a + a*Cos[c + d*x]),x]

[Out]

(Cos[(c + d*x)/2]^2*(((-2*I)*Sqrt[2]*(1 + E^((2*I)*(c + d*x)) + (-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x)
)]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2
*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(d*E^(I*(c + d*x))*(-1 + E^((2*I)*c))
*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]) + (2*Sqrt[Cos[c + d*x]]*(Csc[c] + Sec[c/2]*Sec[(c + d*x)/2]*
Sin[(d*x)/2]))/d))/(a*(1 + Cos[c + d*x]))

________________________________________________________________________________________

Maple [A]  time = 1.99, size = 198, normalized size = 2.8 \begin{align*} -{\frac{1}{da}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ({\it EllipticE} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) +{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) \right ) +2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}- \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)/(a+cos(d*x+c)*a),x)

[Out]

-((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+2*s
in(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2)/a/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1
/2*c)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\cos \left (d x + c\right )}}{a \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate(sqrt(cos(d*x + c))/(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{\cos \left (d x + c\right )}}{a \cos \left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

integral(sqrt(cos(d*x + c))/(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{\sqrt{\cos{\left (c + d x \right )}}}{\cos{\left (c + d x \right )} + 1}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)/(a+a*cos(d*x+c)),x)

[Out]

Integral(sqrt(cos(c + d*x))/(cos(c + d*x) + 1), x)/a

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\cos \left (d x + c\right )}}{a \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate(sqrt(cos(d*x + c))/(a*cos(d*x + c) + a), x)